What is a tracking front end? Open


This is cribbed from the UDR200C manual and it was written years ago but is still very true:

"A number of years ago, the problem posed to the design staff was to retain the RF reliability of the Lectrosonics’ fixed frequency designs but add the frequency flexibility of a frequency agile design. The universal (but not best) way to build frequency agile systems is to design a wide open front end that will pass any frequency within the tuning range of the system. This leads to compromised RF performance in the front end with the possibility of interference, forcing the user to switch frequencies in an attempt to sidestep the interference. This makes frequency agile receivers a self fulfilling system; you have to use the frequency agility to get away from the problems caused by the frequency agile design compromises. The problem of frequency agility is further compounded when you realize that frequency changes “on the fly” cannot be made on any type of wireless system. For example, if there is suddenly an interference problem with a system in use, on stage for instance, a frequency change cannot be made without interrupting the program. Basically, the show must go on. In multichannel applications, changing the frequency of one system will usually produce all kinds of new intermodulation problems with the other systems operating in the same location. Frequency agility is not the universal panacea for interference problems. It is only another tool and a limited tool at that. The first line of defense must be the system’s basic immunity to interference. That required a new look at frequency agile receiver design.

Our solution to the wide open front end problem was to design a selective front end that can be tuned to the frequency in use. Since we wanted this front end to be equivalent to our fixed frequency front ends, this was a daunting task. Lectrosonics has always used front ends with more sections and much more selectivity than any other wireless manufacturer. The final design consisted of a total of 12 transmission line resonators with variable capacitance applied to each resonator by a microprocessor. This allows each resonator to be individually tuned by the microprocessor for any user selected frequency in a 25 MHz band. This sophistication produced a front end that was as selective as fixed frequency designs, yet could cover the entire 25 MHz range.

The gain stages in the front end use some rather special transistors in a feedback regulated high current circuit that combine three parameters that are generally at odds with one another. These are: low noise, low gain and relatively high power. It is easy to understand the advantages of low noise and high power capability but why is low gain desirable? The answer is that in a receiver, low gain allows the front end to handle stronger RF signals without output overload, which is “increased headroom,” so to speak. The result of a design that takes all three of these parameters into consideration at once, is a low noise RF amplifier with a sensitivity rating equal or better than the best conventional design with a hundred times less susceptibility to intermodulation interference. Combining the high power gain stages with the tracking front end produces a receiver that is unusually immune to single and multiple interfering signals close to the operating frequency and in addition strongly rejects signals that are much farther away."

Posted 3 years agoby LectroAdmin

You must be logged in to post an answer