

ASPEN Control Reference v1.3

iii

Table of Contents

ASPEN Control Protocol and Language ... 1

ASPEN Control Protocol .. 1

ASPEN Control Language .. 2

Request Messages ... 2

Response Messages ... 9

Data types .. 13

Macros and the ASPEN Control Language .. 17

Commands .. 18

Variables - Part 1 .. 21

Expressions ... 22

Variables Part 2 ... 26

Loops ... 29

Conditionals .. 30

Loops and Conditionals combined .. 31

ABNF grammar for the ASPEN Control Language ... 33

1

ASPEN Control Protocol and Language
ASPEN Control Protocol
The ASPEN control protocol has several key features:

• It is a request-response
• An

 message protocol
error reporting

• The message syntax is
 mechanism is provided

text based
• Messages may carry

data

ASPEN devices are controlled using a request-response pattern. A controller sends
commands to the device as

 payloads

request messages, and receives in return response

The object, or

messages which contains information about success or failure of the command, and
possibly a data payload. Flow control is simple - issue a request and wait for the
response. Receipt of the response message signals that the device is ready for another
request, and so on.

target of a command is a property of the device, or an action

Two request-response modes are available, which differ in the nature of the response
message:

 to be
executed.

• Normal mode

•

 - the response message contains an indication of success or
failure, and a data payload (if required).
Verbose mode

The verbose mode supports certain 3rd party control programming styles where the
response message needs to be self-describing. Since both the name of the command
target and its value are included, the response message can be processed
independently of the request message.

 - the response message contains an indication of success or
failure, the name and address of the command target, and a data payload
containing the current value of the command target (if required).

ASPEN commands are divided into 3 types:

• Action command - these are used to execute a pre-programmed action

•

 on the
device.
Query command - these are used to read

•

 data from the device in order to learn
the value(s) of one of its properties.
Update command - these are used to send data to the device in order to
modify the value(s) of one of its properties.

ASPEN Control Reference v1.3

2

Properties

Device properties include:

 are single data values, or arrays of data values, that reflect the state of the
device. Many properties in ASPEN devices are multi-valued. For example, on an
ASPEN device with 12 outputs, properties such as output gain or output level exist as
an array of 12 values, one for each output channel. In these cases an
"address" qualifier is used to specify which particular value in a property's array of
values is the target of the command. In most cases a wildcard address can be used to
specify "all". Some properties are read-only, others may be both read (queried)
and written (updated). Details are found in the documentation for the command set.

• Hardware related control settings for things like gain, phantom power, network
setup etc. These are usually read/write properties.

• Hardware related status indications such as audio levels, serial number,
programmable input status etc. These are usually read-only properties.

• "Soft" settings such as macro definitions, labels for inputs and outputs and run-
time variables used in macros. These are usually read/write properties.

Actions

ASPEN Control Language

 change the state of the device in some way without requiring an explicit data
input. An "address" qualifier may be required to specify exactly which property is
affected (or referenced) by the action. Details are found in the documentation for the
command set.

This section concentrates on the language as used for 3rd party control of ASPEN
devices over the serial and ethernet/TCP interfaces. To learn more about the use of the
control language within macros, refer to the Macros and the Control Language topic.

The ASPEN Control language is formally specified in the ABNF grammar document.

Contents:

• Request Messages
• Response Messages
• Data Types

Request Messages

Request messages are composed from a number of components, some of which are
mandatory, some optional. The order in which these appear in the message is always
the same. These components appear as tokens, which are simply characters or groups
of characters defined in the grammar. The tokens contained in a message may be
separated by one or more whitespace characters such as space or tab. A special
meaning is reserved for the whitespace characters carriage return and linefeed when

ASPEN Control Protocol and Language

3

used to mark the end of a message. Otherwise whitespace has no significance and is
ignored.

The building blocks for a request message are:

• ASPEN device address token (optional). This identifies which device in a multi-
unit ASPEN system the command is directed to. The device address token may
take one of two forms, either absolute (an opening ':' character, 7 numeric
characters [0 - 9] and a closing ':' character) or relative (an opening '[' character,
one or more numeric characters [0 - 9] or the wildcard character '*', and a closing
']' character). No more than one device address token may be present in a
request message. The absolute address of an ASPEN device is its serial
number. Its relative address is its position in the system relative to the master
device, which is "1st". The wildcard address '*' may be used only in a relative
address to indicate that the request is directed at all devices. Examples:
:5000101: or [3] or [*]

•

verbose mode

•

 token (optional). An exclamation point character (!) in this
position forces a verbose mode response message to be returned.
target token (mandatory). This identifies the target of the command, some
property or action. This may be a variable reference. The target token may
contain only the alphabetic characters [a - z] and [A - Z]. Exception: Variable
names must be surrounded by the '@' character, and may contain the alphabetic
characters [a - z] and [A - Z] and the numeric characters [0 - 9]. No more than
one target token may be present in a message. Example: serial or @scene3@

•

address token (optional). This modifies the target of the command. It identifies a
particular member of a array of values associated with some device property. It
consists of an opening "(" character, then one or two groups of digits, and finally
a closing ")" character. Only two digit groups are allowed, so at most a two
dimensional space may be addressed. In the case where two digit groups are
present, they must be separated by a comma. The numbers represented by
these groups of digits must be decimal (base 10) numbers greater than zero.
ASPEN devices use addressing and indexing schemes starting with the number
1. Some commands support the use of a range of numbers to specify an
address, using 2 numbers separated by the colon character (:). In a further twist,
some commands may allow one or both of the numbers to be replaced by a
wildcard value, the character '*'. This has the meaning that all of the members
addressed by that index are being referenced. Also, references to variables
containing integer values may be used to specify an address in place of a
literal number. Variable names must be surrounded by the '@' character. No
more than one address token may be present in a message. Examples: (7) or
(17,6) or (*) or (3,4:10) or (@which@) or (@row@,@col@) or (*,@col@)

•

operator token (optional). This modifies the meaning of the command from a
simple action to either a query or an update. Two tokens are allowed, ? and =.
The query operator (?) signals that the request is a query for data, and

ASPEN Control Reference v1.3

4

the update operator (=) signals that the request carries data related to the
desired action. No more than one operator token may be present.

• data format token (optional). This modifies the data format used in the
transaction. Only one token is defined, $, which specifies the hexidecimal
encoded

•

 format, and it must be preceded by either the query operator or the
update operator. When following the query operator it signals that the data
payload in the response message is expected to be encoded in hexidecimal
format. When following the update operator it signals that the data which follows
in the request message is encoded in hexidecimal format. When absent the
default data encoding (described below) is in force. No more than one data
format token may be present.
argument

o

 token (optional). This contains data related to the request and may be
present only when preceded by the update operator (and optionally the data
format operator). There are several options for the argument in a request
message:

simple data type. For example: 7 or
o

"Jury Box"
array of simple data types. For example:

o
{1,0,1,0,1,0,1,0}

binary data encoded in hexidecimal format, but only if preceded by the
data format operator $. For example:

o
02FF1D22

variable reference. Variable names must be surrounded by the '@'
character. For example:

o
@scene3@

comparison expression which evaluates to 0 or 1, using the >, <, >=, <=,
== and != operators. Variables, constants or arithmetic expressions may
be compared. Expressions must be enclosed in parentheses. For
example: (@act@<3) or (@name@=="John") or

o
(@gain@>=(@last@+2))

logical expression which evaluates to 0 or 1, using the logical && (AND)
or logical || (OR) operators. Variables, comparison expressions or logical
expressions may be evaluated. Expressions must be enclosed in
parentheses. For example: (@lights@&&@sound@) or

o
(@lights@||(@act@>1))
arithmetic expression which evaluates to an integer value, using the +, -,
*, / and % operators. Variables, constants, or arithmetic expressions may
be used as terms. For example: (@act@+1) or

See the

(@count@*(@stage@/3))

ASPEN Control Language in Macros topic for details on variables and
expressions. No more than one data token may be present in a message.

• end of message token (mandatory). This is a carriage return character
indicating the end of the request message.

In a multi-unit ASPEN system, all devices can be controlled through a single
communication port on the master device in the system. To route requests to devices
other than the master device it is necessary to prefix an ASPEN device address to the
request message. There are two ways to do this:

ASPEN device addressing

ASPEN Control Protocol and Language

5

• Absolute device address - the serial number of the device, surrounded by colon
characters. For example: :5000100:serial?<CR>

•

 is a request sent to the device
with serial number 5000101. If this device isn't present in the system an ERROR
response will be returned. The address may be of zero length (empty), in which
case processing defaults to the master device in the system. The wildcard
address '*' may not be used.
Relative device address - the position of the device in the multi-unit system,
surrounded by square bracket characters. For example: [3]serial?<CR> is a
request sent to the 3rd device in the system, counting from the master device,
which is always the 1st device. If there is no device in the 3rd position (only
2 devices in system) then an ERROR response will be returned. The address
may be wildcarded, in which case the request will be sent to all devices in the
system. For example: [*]run(3)<CR>

By default the master device in the system will process all requests not qualified by an
ASPEN device address. The master device will process all requests directed at relative
address

 is a request sent to all devices in the
system. A relative address may not be zero ([0]) or of zero length (empty
brackets, []).

[1], and all requests directed to the "empty" absolute address ::

When a request is directed at a particular device in a multi-unit system using a device
address, the response message will also contain an address to identify its source. If an
absolute device address is given in the request, then an absolute device address is
present in the response, and likewise for a relative address. If the wildcard relative
address [*] is given in the request message then the response will contain the relative
address of the master device in the system [1], since in this case only the master
device's response message is returned. If the empty absolute address :: is given in the
request message, the message is by default processed by the master device. In this
case the response will contain the absolute address (serial number) of the master
device. For example, for a device with serial number 5000101:

 . Note: When a
request is sent to all devices in a multi-unit system using the wildcard relative address
[*], the response from the master device is returned, responses from the slave devices
are discarded. For this reason the wildcard relative address makes sense only for action
and update requests - not query requests.

 Request Response

 :5000101:serial?<CR> :5000101: OK "5000101"<CRLF>

 [3]serial?<CR> [3] OK "5000101"<CRLF>

 ::serial?<CR> :5000101: OK "5000101"<CRLF>

 [*]serial?<CR>

In all cases the source of the response message is unambiguously identified.

[1] OK "5000101"<CRLF>

ASPEN Control Reference v1.3

6

Note: A slave device in a multi-unit system can be controlled through one of its own
communication ports as well as through a communication port on the system master
device. However, slave devices are not capable of routing requests from one of its
communication ports to the other devices in the system - they can only process
requests locally. For this reason request messages sent to a slave device which include
a relative device address result in an ERROR response. Requests sent to a slave
device which include an absolute device address will result in an ERROR response
unless the absolute address matches that of the slave device (its serial number).

A request message can be prefixed with an exclamation point (!) character to force a
"verbose" response message. The verbose response contains the name and address of
the target (action or property being addressed), along with the current value of that
target if it's a property. This supports certain 3rd party control programming styles where
the response message resulting from a request needs to be self-describing so that
it can be processed independently of the request message. For example, this query
request (verbose mode):

Verbose request

!serial?<CR>

results in a response like this:

OK serial="5000101"<CRLF>

rather than a response like this (non-verbose mode)

Regarding verbose update requests, it's important to note that property values returned
in the verbose response reflect the actual state of the property

OK "5000101"<CRLF>

after the update has
been attempted. This makes the verbose response reliable for refreshing 3rd party
controller internal state or displays.

• Action request

ASPEN request message types

Action commands may or may not have an address operator, and trigger an
action which doesn't need input data and doesn't return any output data. Some
examples:

This is a normal mode request to execute the "aspenum" action..

aspenum<CR>

recall(3)<CR>

ASPEN Control Protocol and Language

7

This is a normal mode request to execute the "recall" action on address 3.

This is a verbose mode request to execute the "run" action on address 5.

!run(5)<CR>

This is a normal mode request to execute the "recall" action on address 3. This
request is directed at a specific device in a multi-unit ASPEN system, whose
serial number is 5000101.

:5000101:recall(3)<CR>

This is a verbose mode request to execute the "run" action on address 5. This
request is directed at a specific device in a multi-unit ASPEN system, located in
the 4th position (relative to the master).

[4]!run(5)<CR>

•

This is a normal mode request to execute the "run" action on address 5. This
request is directed at all devices in a multi-unit ASPEN system.

[*]run(5)<CR>

• Queries may or may not have an address operator. They specify the query
operator '?' and trigger the return of the requested data in the response
message. They are the means by which a controller can read the value of some
property of the device or poll the device to get status information, perhaps to
drive indicators. Some examples:

This is a normal mode request for the value of the property "actpre".

actpre?<CR>

This is a normal mode request for the value of the property "xpgn" at 2-
dimensional address "(12,17)".

xpgn(12,17)?<CR>

This is a normal mode request for the value of the property "prgin" at all
addresses (wildcarded).

prgin(*)?<CR>

This is a verbose mode request for the value of the property "xpgn" at 2-
dimensional address "(12,17)". A verbose mode response will be received by the
controller.

!xpgn(12,17)?<CR>

ASPEN Control Reference v1.3

8

This is a normal mode request for the value of the property "actpre". This request
is directed at a specific device in a multi-unit ASPEN system, located in the 2nd
position (relative to the master).

[2]actpre?<CR>

This is a verbose mode request for the value of the property "prgin" at all
addresses (wildcarded). This request is directed at a specific device in a multi-
unit ASPEN system, whose serial number is 5000101. A verbose mode response
will be received by the controller.

This is a normal mode request for the value of the run-time variable "@scene@".

@scene@?<CR>

• Update request

Updates may or may not have an address operator. They specify the update
operator '=' and carry within them a data payload (the argument) for the device to
process. They are the means by which a controller can change the value of
device properties such as the gain of an audio channel or control a feature like a
pink noise generator. Some examples:

This is a normal mode request to update the property named "actpre" to the
value 3.

actpre=3<CR>

This is a normal mode request to update the property named "xpgn", at 2-
dimensional address "(12,17)" to the value -15.

xpgn(12,17)=-15<CR>

This is a normal mode request to update the property named "ingn", at address
"(*)" (wildcarded, meaning

ingn(*)={35,42,41,0,0,0,0,0,0,0,0,0,0,0,0,0}<CR>

all). The new values are supplied in the array of
integers in the data payload. Property "ingn(1)" will be updated with the 1st
integer in the array (35), "ingn(2)" with the 2nd integer in the array (42), and so
on. ASPEN devices expect a complete set of data when an update is
directed at a wildcarded address. If the "ingn" property is an array of 16 items,
then an ERROR response will be received if an array of data is sent to the device
whose length is not exactly 16. Likewise, if a variable reference is supplied as the
argument the variable must contain an array of 16 integers. In the case of two
dimensional arrays, the notation (*,*) used in addressing a property implies a
responsibility for the controller to send the entire 2D array if data is transferred.

ASPEN Control Protocol and Language

9

Likewise, the notations (2,*) and (*,2) imply a responsibility for the controller to
send the appropriate row or column slice of the 2D array.

This is a verbose mode request to update the property named "outmt", at
address "(2)" to the value 1. A verbose mode response will be received by the
controller.

!outmt(2)=1<CR>

This is a verbose mode request to update the property named "outmt", at
address "(2)" to the value 1. This request is directed at a specific device in a
multi-unit ASPEN system, whose serial number is 5000101. A verbose mode
response will be received by the controller.

:5000101:!outmt(2)=1<CR>

This is a normal mode request to update the property named "outmt", at address
"(2)" to the value 1. This request is directed at a specific device in a multi-unit
ASPEN system, located in the 3rd position (relative to the master).

[3]outmt(2)=1<CR>

This is a normal mode request to update the run-time variable "@scene@" to the
value 3.

@scene@=3<CR>

•

This is a normal mode request to update the run-time variable "@scene@" to the
value 3. This request is directed at all devices in a multi-unit ASPEN system.

[*]@scene@=3<CR>

Response Messages

Response messages are composed from a number of components, some of which are
mandatory, some optional. The order in which these appear in the message is always
the same. These components are tokens as described in the discussion of request
messages above, and the same whitespace considerations apply.

The building blocks for a response message are:

• ASPEN device address token (optional). This identifies which device in a multi-
unit ASPEN system the response is coming from. The device address token may
take one of two forms, either absolute (an opening ':' character, 7 numeric
characters [0 - 9] and a closing ':' character) or relative (an opening '[' character,
one or more numeric characters [0 - 9], and a closing ']' character). No more than
one device address token may be present in a response message, and it will be

ASPEN Control Reference v1.3

10

present only if the request message included a device address. Examples:
:5000101: or [3]

•

status token (mandatory). This indicates whether the request was successful or
resulted in failure. The status token has two possible values, OK and ERROR .
No more than one status token may be present in a message. Example: OK

•

target token (optional). This is present only in verbose mode response
messages, and identifies the target of the command, some property or
action. This may be a variable reference. The target token may contain only the
alphabetic characters [a - z] and [A - Z]. Exception: Variable names must be
surrounded by the '@' character, and may contain the alphabetic characters [a -
z] and [A - Z] and the numeric characters [0 - 9]. No more than one target token
may be present in a message. Example: serial or @scene3@

•

address token (optional). This is present only in verbose mode response
messages, and modifies the target of the command. It identifies a particular
member of a array of values associated with some device property. It consists of
an opening "(" character, then one or two groups of digits, and finally a closing
")" character. Only two digit groups are allowed, so at most a two dimensional
space may be addressed. In the case where two digit groups are present, they
must be separated by a comma. The numbers represented by these groups of
digits must be decimal (base 10) numbers greater than zero. ASPEN devices
use addressing and indexing schemes starting with the number 1. Some
commands support the use of a range of numbers to specify an address, using 2
numbers separated by the colon character (:). In a further twist, some
commands may allow one or both of the numbers to be replaced by a wildcard
value, the character '*'. This has the meaning that all of the members addressed
by that index are being referenced. Also, references to variables containing
integer values may be used to specify an address in place of a literal number.
Variable names must be surrounded by the '@' character. No more than one
address token may be present in a message. Examples: (7) or (17,6) or (*) or
(3,4:10) or (@which@) or (@row@,@col@) or (*,@col@)

•

operator

•

 token (optional). This is present only in verbose mode response
messages, where the update operator (=) signals that the response message
carries data representing the value of the target of the command. Only the
update operator may appear in a verbose mode response message.
data format token (optional). This modifies the data format used in the
transaction. Only one token is defined, $, which specifies the hexadecimal
encoded

•

 format. When present it signals that the data payload in the response
message is encoded in hexadecimal format. No more than one data format token
may be present.
data token (optional). This contains data requested by the controller in a query
message or being returned in response to a verbose mode request message. In
a verbose mode response the data is preceded by the update operator (and
optionally the data format operator). There are only 3 options for the data
payload in a response message:

ASPEN Control Protocol and Language

11

o simple data type. For example: 7 or
o

"Jury Box"
array of simple data types. For example:

o
{1,0,1,0,1,0,1,0}

binary data encoded in hexidecimal format, but only if preceded by the
data format operator $. For example: 02FF1D22 No more than one data
token may be present in a message.

Note: Response messages return only data values, expressed as simple types,
arrays of simple types, or hexadecimal encoded binary data. When variables or
expressions are used to convey data in a verbose request message, the variable
or expression is evaluated and the result is used. For example, this verbose
request:

ingn(3)=(2+2)<CR>

will result in this verbose response:

OK ingn(3)=4<CRLF>

In other words, verbose response messages return only data values

•

 for
addresses and properties.

end of message token (mandatory). This is a carriage return /
linefeed character pair indicating the end of the message.

• Action response

ASPEN response message types

The response contains a status code indicating success or failure of the request
processing. No data token is present. An example:

Normal mode request processing succeeded. The action was executed.

OK<CRLF>

Normal mode request processing succeeded. The action was executed. The
request was directed to the 3rd device in a multi-unit system, and this is
confirmed in the response.

[3] OK<CRLF>

Verbose mode request processing succeeded. The name of the action executed
("recall") is returned along with the address specified in the request (2).

OK recall(2)<CRLF>

ERROR<CRLF>

ASPEN Control Reference v1.3

12

Request processing failed, the action was not executed. The status code
ERROR is returned to the controller, which should

o the target of the command is misspelled or nonexistent

 recognize this status code
and take appropriate action. The most common reasons why a action command
request might fail are:

o the address is out of range
• Query response

The response contains a status code indicating success or failure of the request
processing. A data payload is present. Examples:

Normal mode request succeeded. The requested data (22) is returned in the
message.

OK 22<CRLF>

Normal mode request succeeded. The requested data (22) is returned in the
message. The request was directed to a device in a mult-unit system with serial
number 5000101, and this is confirmed in the response.

:5000101: OK 22<CRLF>

Verbose mode request processing succeeded. The name/address of the property
queried is returned along with its current value (50).

OK ingn(3)=50<CRLF>

Request processing failed. The status code ERROR is returned to the controller,
which

ERROR<CRLF>

should

o the target of the command is misspelled or nonexistent

 recognize this status code and take appropriate action. The most
common reasons why a query request might fail are:

o the address is out of range
• Update response

The response contains a status code indicating success or failure of the request
processing. A data payload is present only it the request was made in verbose
mode. Examples:

Normal mode request processing succeeded.

OK<CRLF>

ASPEN Control Protocol and Language

13

Normal mode request processing succeeded. The request was directed at the
3rd device in a multi-unit system, and this is confirmed in the response.

[3] OK<CRLF>

Verbose mode request processing succeeded. The name/address of the property
updated is returned along with its new value (55).

OK ingn(3)=55<CRLF>

Request processing failed. The status code ERROR is returned to the controller,
which

ERROR<CRLF>

should

o the target of the command is misspelled or nonexistent

 recognize this status code and take appropriate action. The most
common reasons why an update request might fail are:

o the address is out of range
o the data sent in the update request message is ill formed or out of range

Data types

The ASPEN protocol supports the following data types:

• quoted string
•

integer

•

array of integer

•

floating point

•

array of floating point

•

binary

Variables are capable of storing values of all types

except

It is worth noting that many ASPEN device properties are naturally thought of as

 the binary type.

boolean types. These items use the integer type and but are limited to values
0 ("false" or "disabled") and 1 ("true" or "enabled"). Likewise, logical and comparison
expressions evaluate to integer values, either 0 or 1.

• Quoted string type

ASPEN data type formats

ASPEN Control Reference v1.3

14

A quoted string token consists of an opening double quote character ("),
followed by zero or more characters, and finally a closing double quote character.
Quoted strings may contain any printable ASCII character except the double
quote character (") used to enclose them, and the backslash character (\) used
as an "escape" character. To embed double quote characters or backslashes
within a string they must be "escaped" by preceding them with a backslash
character: \" or \\. The special escaped forms \r (carriage return), \n (newline)
and \t (tab) are also recognized. Non-printable ASCII characters may be
expressed using the hexadecimal escaped form \xHH where HH is any 2-digit
hexadecimal number. Whitespace is ok within a quoted string, and is preserved.
Quoted string tokens may not exceed 127 characters in length, exclusive of the
enclosing double quote characters. Strings may be empty. Some examples:

"Chairman"

""

"The \"Lost\" Sheep"

"serial?\r"

"id?\x0D"

• Integer type

/p>

An integer token consists of an optional sign character (either "+" or "-") and a
series of one or more decimal digit characters (0,1,2,3,4,5,6,7,8,9 and 0). No
other characters are permitted. The maximum number of characters in an integer
token, including any sign character, is 15. This limitation is general and has
nothing to do with the range of values allowed for a particular ASPEN device
property. Some examples:

999

• Array of integer

-22

An array of integer token consists of a series of one or more comma delimited
integer tokens enclosed in matching braces. Whitespace separating braces,
integer tokens, and commas is ignored. The maximum length of an integer array
is 64 items. Arrays may not be empty. Some examples:

{0,-10,22,0,0,50}

• Floating point

{1750}

ASPEN Control Protocol and Language

15

A floating point token consists of an optional sign character (either "+" or "-"), a
series of zero or more decimal digit characters (0,1,2,3,4,5,6,7,8,9 and 0), a
mandatory decimal point character ("."), and finally another a series of zero or
more decimal digit characters. Exponential notation is not supported. The
maximum number of characters in a floating point token, including any sign
character and the mandatory decimal point character, is 15. This limitation is
general and has nothing to do with the range of values allowed for a particular
ASPEN device property. Some examples:

0.6242

• Array of floating point

-172.0

An array of floating point token consists of a series of one or more comma
delimited floating point tokens enclosed in matching braces. Whitespace
separating braces, floating point tokens, and commas is ignored. The maximum
length of an floating point array is 64 items. Arrays may not be empty. Some
examples:

{0.0,-10.6,-22.651,0.0,0.0}

• Binary

{-1.000175}

A binary data token consists of a series of hexadecimal digit character pairs
(0...9 and A...F). Each pair encodes one byte of binary data. The maximum
length of an encoded binary block is 96 bytes in a request message to a ASPEN
device (which requires 192 hex digits total when encoded). Binary data tokens
may be used only when the data format for the message has been set to
hexadecimal encoded by the presence of the data format token $. An example

The hexadecimal encoded data format and the binary data type are used by
certain ASPEN software programs for special purposes. "Third party" remote
control applications don't need to use the binary type, it is described here for
completeness.

$00A7C2990014

17

Macros and the ASPEN Control Language
ASPEN Macros are simply a series of instructions - expressed using the ASPEN
Control language. The elements of the control language are:

• Commands - These are the familiar native commands of the ASPEN device, as
documented in the "Command Set" in the reference manual or under the Control
Panel Help menu. Ultimately, the purpose of the macro will be to issue
commands to the device in order to make it "do" something, or to read out its
current settings for use by external controllers.

• Variables - These are user defined global storage, used to pass data within a
macro, or between Macros. Variables make it possible for Macros to have a
"memory" of past actions, or to capture data for use within another macro, at
some other time. Arithmetic, comparison, and logical operations can be
performed with variables.

• Expressions - These are used to compute logical or arithmetical results using
variables or constant values. Expressions make it possible to perform arithmetic,
create loops, or make decisions using conditional statements.

• Loops - These are "while-do" statements of the sort seen in many other
programming languages. Loops make it possible for a particular command to be
run multiple times as long as the state of some device property or the value of
some variable meets a specified condition.

• Conditionals - These are "if-then-else" statements of the sort seen in many other
programming languages. Conditionals make it possible for a macro to choose
between alternative actions on the basis of the current state of some device
property or the value of some user defined variable.

Commands, loops and conditionals are statements, and can stand alone as a macro
"line" or instruction. Variables and expressions play a supporting role, with variables
commonly used in expressions and both often found in update commands as the
"argument". Loops and conditionals contain both expressions defining their "condition"
and commands to be executed as their "actions" if the condition is met.

Macros are "run" (executed) in response to some triggering event, such as a serial
command or the pressing of a push button connected to a programmable logic input pin.
Applications such as room combining, courtroom sound systems, and teleconferencing
rely on Macros to make system setup changes "on the fly" in response to button panel
activity or serial commands from 3rd party control systems.

Macros may include up to 64 "lines", each line containing one or more instructions, or
statements. Multiple statements must be separated by a ';' (semicolon) character. These
maximum length of a macro line is 115 characters. However, a long statement can be
divided between multiple macro lines using "line continuation". An underscore character
'_' at the end of a line indicates a continuing statement. A maximum of 8 lines can be

ASPEN Control Reference v1.3

18

joined together this way into a single statement. Execution occurs when the statement is
complete, which is indicated by a final line which is not continued. For example:

xpgn(1,*)={-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,_
-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,_

Here an array consisting of 48 elements is spread across three lines so that the line
length limit is not exceeded. Note the underscore character at the end of the first two
lines, which indicates that the statement is to be continued on the next line. The third
and final line is not continued so the entire statement is executed at that point.

-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70}

 Note: the following must not be interrupted by a line continuation:

• variables, for example: @foo@
• quoted strings, for example:

 bracketed by the "at" character (@)
"East Room #1"

• action expressions, for example:

 bracketed by the double quote
character (")

`ingn(3)=@result@`

The continuation will fail if this is done. Line continuation is available in firmware
versions 1.4.4 and higher.

 bracketed by the backtick
character (`)

Commands

Briefly, ASPEN commands executed within Macros consist of a mix of elements in the
following order:

• verbose mode

•

 token - an exclamation point character (!) in this position causes
a verbose mode response message to be sent to the communications port
designated as the "macro verbose response" port. This allows the output of
commands executed in a macro to be monitored by 3rd party control
applications.
target

•

 - this identifies a property of the ASPEN device like "input gain", or an
action to be performed, like "run a macro". It may be a variable referenced by
name. Mandatory.
address - this modifies the target of the command, by identifying a particular
member of a set of things - which input gain, or which

•

 macro to run. The
documentation for a command specifies whether or not an address a required,
and the form it should take.
operator - if present, modifies the meaning or intent of the command. The query
operator '?' signals that the command is a query for the value of some device
property. The update (assignment) operator '=' signals that the command
includes data (the argument) which is to be assigned to some device property. If
no operator is present then the command is for a some action to be performed.
The documentation for a command will specify which operators, if any, may be
used.

Macros and the ASPEN Control Language

19

• argument

For example:

 - This is the value or data payload needed for "update" commands.
The documentation for a command will specify what kind of argument, if any, is
required.

• outgn(3)?

•

The target "outgn" means output gain value, the address "3" means channel 3,
the '?' operator means it's a query for the value of the target property.
outgn(3)=2

•

The target "outgn" means output gain value, the address "3" means channel 3,
the '= ' operator means it's an update of the target property, the argument "2" is
the new value.
run(3)
The target "run" means "run a macro", the address 3 means macro number 3, the
absence of an operator means it's an order to perform the target action.

•

Special built-in commands for use in Macros:

exit - this command forces the macro processor to stop executing the macro. It's
normally used within an conditional or loop instruction. For example:

•
if(@foo@<10)then`ingn(*)=@bar@`else`exit`
sleep - this command forces the macro processor to suspend execution of the
macro for a specified period of time, in milliseconds. For example: sleep(500)
will suspend execution for approximately 500 msec. The minimum sleep time is
approximately 250 msec. If a shorter time is specified the delay will still be the
minimum time. When the sleep time expires, execution of the macro will resume
on the next line. This means that in a line containing a series of semicolon
delimited commands, sleep should be the last command in the line because any
commands following it will never be executed.
Note: sleep

•
 is available in firmware versions 1.4.4 and higher.

sendcmd - this command allows one device in a multi-unit ASPEN system to send
a command to another device to be executed there. If used in a macro running
on the master device, a specific slave device is specified using relative
addressing, or all slave devices are specified by the wildcard address '*'. If used
in a macro running on a slave device, only the master device may be specified
using relative address '1'. The command being issued is given in a quoted string
argument or a string value stored in a variable. For example:
sendcmd(*)="run(15)" could be used on the master device to send the command
"run(15)" to all slave devices in the system.
sendcmd(2)=@foo@; could be used on the master device to send the command
stored in variable @foo@ to the slave device at relative address 2.
sendcmd(1)="@param@=12;run(20)" could be used on a slave device to send the
comma-delimited commands "@param@=12" and "run(20)" to the master device
in the system at relative address 1.
Note: The maximum length of a command sent using sendcmd is 255 characters,

ASPEN Control Reference v1.3

20

which is the maximum length of a string variable. However, if using a quoted
string (e.g. "run(20)") as the argument, it must be remembered that the maximum
length of quoted strings is only 127 characters. Commands longer than 127
characters must be built up dynamically using variables and the string format and
concatenation operators. In situations where multiple commands need to be
send to a device, it is good practice to bundle them into a single semicolon
delimited series to be sent with sendcmd. This way the speed of execution is
greatly increased on the remote device as the commands can be processed in a
batch. For example:

sendcmd(1)="@zone@=22;@gains@=`rpoutgn(*)?`;run(22)"

is much more efficient than sending the commands individually like this:

sendcmd(1)="@zone@=22"
sendcmd(1)="@gains@=`rpoutgn(*)?`"
sendcmd(1)="run(22)"

Also, it is important to know that the target device may not be able to process
sendcmd requests as quickly as they can be dispatched in a macro. When it is
necessary to issue multiple sendcmd commands in a row they can be interleaved
with sleep commands like this:

sendcmd(1)="@zone@=22;@gains@=`rpoutgn(*)?`;run(22)"
sendcmd(1)="sleep(250)"

•
sendcmd(1)="@mic@=3;@mutes@=`inmt(*)?`;run(31)"
sendstr - this command allows an arbitrary string to be sent over the RS232 or
TCP port of a device. The port is specified in the first address value. It is possible
to specify which device in a multi-unit system that the string be sent from with an
optional second address value. If used within a macro running on the master
device of a multi-unit ASPEN system, it may optionally address a slave device. If
used within a macro running on a slave device, it may optionally address the
master device. This must be a relative address. The string to be sent is given as
a quoted string argument or a string value stored in a variable. For example:
sendstr(2)=@foo@ could be used in a macro in any device to send the string
stored in variable @foo@ to port 2 (the TCP port local to that device).
sendstr(1,3)="SP19;" could be used in a macro in the master device to send the
string "SP19;" to port 1 (the RS232 port) on the slave device at relative address 3
(the 2nd slave device in the system).
sendstr(2,1)="SP19;" could be used in a macro in a slave device to send the
string "SP19;" to port 1 (the RS232 port) on the master device in the system at
relative address 1.
Note: The maximum length of a command sent using sendstr is 255 characters,
which is the maximum length of a string variable. However, if using a quoted
string (e.g. "FF0122;") as the argument, it must be remembered that the
maximum length of quoted strings is only 127 characters. Strings longer than 127
characters must be built up dynamically using variables and the string format and

Macros and the ASPEN Control Language

21

concatenation operators. For example:

@data@=`rpxpgn(3,*)?`
@crlf@="\r\n"
@str@=format(@data@,"%d")
@str@=@str@:@crlf@
sendstr(1,2)=@str@

Here a large array value is dynamically captured in a variable, then formatted as
a string in variable @str@. A line ending is concatenated, and the string is then
sent.

Also, it is important to know that when using sendstr to send strings to a remote
device, the target device may not be able to process sendstr requests as quickly
as they can be dispatched in the macro. When it is necessary to issue multiple
sendstr commands in a row to a remote device, they can be interleaved with
sleep commands like this:

sendstr(1,2)="FF0122;"
sendstr(1,2)="sleep(250)"
sendstr(1,2)="FA9900;"

Verbose mode commands in Macros: If a "verbose mode" command is executed
within a macro, the response can be directed to a communications port rather than
suppressed. Verbose mode commands are those prefixed with the '!' (bang) character,
for example: !ingn(3)=0. This can be useful for 3rd party control panel applications that
rely on feedback from command execution to update their visual controls. If connected
to the "macro verbose response" port the application can stay synchronized with the
device state when a macro is run. Either the RS232 port or the TCP ports may be used
for this purpose, selected with the macvrport command. This command can be issued
from within any macro, but the "run on powerup" macro is the natural choice if it needs
to be configured only once.

Variables - Part 1

Variables are user defined, and consist of a variable "name" enclosed within a pair of
'@' characters. The name may include any of the printable characters except '@'. The
maximum length allowed for variable names is 15 characters (not including the
enclosing '@' characters). Examples: @stage2@ or @mic_muted@. Variable names are
case sensitive! For example, @foo@ is not the same variable as @Foo@ or @FOO@.

Variable types:

•

 Variables can store the following ASPEN data "types":

integer such as
•

42
array of integer such as {1,2,3,4}

ASPEN Control Reference v1.3

22

• string such as
•

"East hallway"
boolean really an integer, interpreted as "false" when the integer value is 0

•

 and
as "true" for any other value
array of boolean really an array of integer, with values of either 1 or 0, such as
{1,0,1,0}

Initializing variables: A variable is "initialized" the first time (after powerup) that the
macro command processor encounters an instruction assigning a value to it. For
instance, running a macro containing the instruction @foo@=42 will cause the variable
@foo@ to be created if it doesn't already exist. The variable @foo@ is said to be
"initialized" at this point with integer value 42. The instruction @bar@={1,2,3,4,5}, on the
other hand, would initialize @bar@ with an array of integer value with 5 elements.
Important: variables are "volatile", which means that they are lost when power is
removed from the device. When the device is powered back up, the variables will be
initialized all over again as described above. The "run on powerup" macro is a good
place for initializing variables shared between multiple Macros.

String variable length: The maximum length of an string variable is 255 characters.

Array variable length:

•

 The maximum length of an array variable is 64 elements. The
length of a particular array variable can be determined using the length operator, which
returns the number of elements in the array. For example:

@foo@=length(@bar@)

Accessing elements in array variables: Individual elements of a variable of type
array of integer or array of boolean can be accessed using a "subscript" notation. For
example, @foo@[2] accesses the 2nd element in the array. The location of the element
must be a an integer value between 1

•

 and 64 enclosed within a pair of '[' and ']'
characters. The location may also be specified as a variable with an integer value,
or even by an arithmetic expression. For example:

•
@foo@[2]

•
@foo@[@bar@]

•
@foo@[@bar@[3]]
@foo@[@bar@+1]

Important: It is an error to address array elements that don't exist, such as in @foo@[5],
when @foo@

 has only 4 elements. It is also an error to use the subscript notation with
any variable whose type is not an array of integer or array of boolean (e.g. strings,
simple integers).

Expressions

Macros and the ASPEN Control Language

23

Arithmetic expressions: Basic integer arithmetic operations may be performed using
variables and constant values. Addition ('+'), subtraction ('-'), multiplication ('*'), division
('/') and modulo division ('%') operations are supported, but remember that the variable
needs to hold an integer value for the result to make sense. Use pairs of parentheses, '('
and ')', to group terms in complicated expressions to get the proper result. The value

•

 of
an arithmetic expression is the integer result of the operations. For example:

@foo@+2

•

Value is the sum of 2 and @foo@
(2+@foo@[2])*4

•

Value is the sum of 2 and the 2nd element of array @foo@, multiplied by 4
@foo@-2+@bar@

•

Value is @bar@ added to the difference between @foo@ and 2
@foo@/(@bar@+1)

•

Value is @foo@ divided by the sum of @bar@ and 1
@foo@*@foo@

•

Value is the square of @foo@
@foo@=@foo@+1
Value is @foo@ incremented by 1

Concatenation expressions:

•

 String values can be concatenated (joined) by using the
concatenation operator ':'. The value of a concatenation expression is another string
value. For example:

@foo@:" Two"

•

If @foo@ holds the string value "Act" then the value is "Act Two".
"Scene: ":@foo@

•

If @foo@ holds the string value " Two" then the value is "Scene Two".
@foo@:@bar@

•

If @foo@ holds the string value "Act" and @bar@ holds the value " Two" then
the value is "Act Two".
"Next: ":@foo@:@bar@

Concatenation expressions must include at least one variable reference. The
concatenation of two literal string values is not supported, an error will result. Literal
values or variables used in concatenation expressions must hold string values, or an
error will result. If the result of a string concatenation exceeds the maximum string
variable length of 255 characters it will be truncated to that length.

If @foo@ holds the string value "Act" and @bar@ holds the value " Two" then
the value is "Next: Act Two".

String formatting expressions:

• variable is a variable reference (name) containing a string or integer value to be
formatted.

 Formatted string values can be generated by using
the format operator "format". This operator requires two comma separated parameters
enclosed in parentheses, given in the form 'format(variable,"format specifier")' where:

ASPEN Control Reference v1.3

24

• format specifier is a double-quoted literal string value containing a C language
style format specifier and optional literal text. Only format specifiers "%d"
(decimal integer), "%x" (lowercase hexadecimal integer), "%X" (uppercase
hexadecimal integer) and "%s" (string) are supported. C language style flags
and width sub-specifiers may be applied to integer values. Note: When the "%d"
format specifier is used and the variable holds an array of integers, the array will
be formatted in the ASPEN array syntax (comma separated values enclosed in
curly braces).

The value of a format expression is a string value which can be assigned to a variable,
or used in a concatenation expression. For example:

• @result@=format(@foo@,"Title: %s")

•

If @foo@ holds the string value "Macbeth" then the value assigned to @result@
is "Title: Macbeth".
@result@=format(@foo@,"run(%d)")

•

If @foo@ holds the integer value 7 then the value assigned to @result@ the
value is "run(7)".
@result@=@title@:format(@foo@," - Act %d")

•

If @title@ holds the string value "Macbeth" and @foo@ holds the integer value 2
then the value assigned to @result@ the value is "Macbeth - Act 2".
@result@=format(@foo@,"ingn(*)=%d")

•

If @foo@ holds the array of integer value {1,2,3,4,5,6,7,8} then the value the
value assigned to @result@ is "ingn(*)={1,2,3,4,5,6,7,8}".
@result@=format(@foo@[3],"%d")

•

If @foo@ holds the array of integer value {1,2,3,4,5,6,7,8} then the value the
value assigned to @result@ is "3".
@result@=format(@foo@,"AA %03d\r")

The type of the variable value and the C language style format specifier must agree or
an error will result. If the result of a format expression exceeds the maximum string
variable length of 255 characters it will be truncated to that length.

If @foo@ holds the integer value 7 then the value the value assigned to
@result@ is "AA 007\r" where '\r' indicates an ASCII carriage return (hex 0D) and
the specifier '%03d' is the decimal integer specifier modified to force the value 7
to be formatted as a zero padded 3 digit number (sub-specifiers are flag '0', width
'3' - consult a C language reference to learn more).

Comparison expressions: Comparisons can be made between variables and constant
values. An integer variable can be compared to a literal integer value or another integer
variable. A string variable can be compared to a another string variable, or tested for
equality with a string literal. Equality ('== '), inequality ('!= '), less than ('<'), greater
than('>'), less than or equal ('<= ') and greater than or equal ('>= ') comparisons are
supported. For string types the comparisons are"lexical" in nature - they are compared
character by character, and characters are judged by their ASCII code value. So "aaa"
is equal to "aaa" but not equal to "aaaa", and "abc" is "less than" "bbc" because 'a'

Macros and the ASPEN Control Language

25

comes before 'b' in the ASCII table. The value

•

 of a comparison expression is a boolean
type: "true" if the condition is met or "false" if the condition is not met. For example:

@foo@<10

•

True if @foo@ is less than 10
@foo@[2]<10

•

True if the 2nd element of array @foo@ is less than 10
@foo@>@bar@

•

True if @foo@ is greater than @bar@ (works for integer or string values)
"test"==@foo@

•

True if @foo@ contains the string value "test"
@foo@ != 17

•

True if @foo@ is not equal to 17
@foo@==@bar@

•

True if @foo@ is identical to @bar@ (works for string, integer and array of
integer types)
@foo@[2]==@bar@

•

True if the 2nd element of array @foo@ is identical to @bar@ (works only if
@foo@ is an array of integer (or boolean) type and @bar@ is an integer (or
boolean) type.)
@foo@!=@bar@

Since an arithmetic expression has an integer value, it can substitute for an integer
within a comparison expression. For example:

True if @foo@ is not identical to @bar@ (works for string, integer and array of
integer types)

• @foo@<(@bar@+10)

•

True if @foo@ is less than the sum of @bar@ and 10
((@foo@*2)+1)==@bar@

Note that the arithmetic expression must be enclosed with parentheses for this to work
properly.

True if 1 added to the product of @foo@ and 2 is equal to @bar@

Logical expressions: Variables can be used in logical expressions. Any variable with
an integer value can be treated as a boolean type, either "true" or "false". The
convention is that the integer value zero (0) means "false" and any nonzero value
means "true". Variables that are used in this way can then be compared using the
"logical" operations "AND" ('&&'), "OR" ('||') and "NOT" ('!'). The value

•

 of a logical
expression is also a "boolean" type. For example:

@foo@

•

True if @foo@ is nonzero
!@foo@
True if NOT @foo@ is nonzero (that is, @foo@ is zero)

ASPEN Control Reference v1.3

26

• @foo@&&@bar@

•

True if both @foo@ and @bar@ are nonzero
@foo@||@bar@

•

True if either @foo@ or @bar@ are nonzero (or both)
!@foo@&&!@bar@&&@sam@

Going further, more complicated expressions can be formed by grouping terms using
parentheses to get the proper result. Also, since a comparison expression has a
boolean value, it can substitute for a boolean variable within a logical expression. For
example:

True if NOT @foo@ is nonzero and NOT @bar@ is nonzero and @sam@ is
nonzero (that is, @foo@ and @bar@ are zero, and @sam@ is nonzero)

• @foo@&&(@bar@||@sam@)

•

True if @foo@ is nonzero and either @bar@ or @sam@ are nonzero
(@foo@||@bar@)&&(@sam@<50)

•

True if @foo@ or @bar@ are nonzero and @sam@ is less than 50.
(@foo@!="stop")&&!@bar@

Note that the comparison expression must be enclosed with parentheses for this to
work properly.

True if @foo@ does not contain the string value "stop" and @bar@ is zero

Variables Part 2

Assigning a value to a variable: A value can be assigned to a variable in several
ways. Whatever the method, the assignment instruction begins with the variable name
followed by the assignment operator '=', like this: @foo@=

•

. Next comes the expression for
the value to be stored in the variable. The possibilities are:

Literal value:

o

 A "literal" integer or string value can be assigned. The value is
expressed using the normal ASPEN syntax. For example:

o
@foo@=142

o
@foo@={4,4,4,4}

•
@foo@="hello"

Query output:

o

 The value of some device "property" can be assigned to a
variable by capturing the output of the appropriate "query" command. The
command is expressed using the normal ASPEN syntax, enclosed within a pair
of '`' (backtick) characters. Don't forget the '?' at the end of the query! For
example:

o
@foo@=`outmt(*)?`

o
@foo@=`prgin(3)?`

o
@foo@[2]=`prgin(3)?`

•
@foo@=`serial?`

Another variable:
o

 The value of another variable can be assigned. For example:
@foo@=@bar@

Macros and the ASPEN Control Language

27

• Arithmetic expression:

o

 The value of an arithmetic expression can be
assigned. For example:

o
@foo@=(@bar@+!@sam@)

Since the value of a arithmetic expression is an integer type @foo@ will hold
result as such.

@foo@=((@bar@/2)+1)

Note:

•

 It is not mandatory to enclose the entire arithmetic
expression in parentheses when assigning its value to a variable. Use
parentheses to group terms in complicated expressions to get the proper result.

Concatenation expression:

o

 The value of a concatenation expression can be
assigned. For example:

o
@foo@=@bar@:@sam@

o
@foo@=@bar@:"hello"

Since the value of a concatenation expression is an string type @foo@ will hold
result as such.

@foo@=@bar@:"hello":@sam@

Note:

•

 Do not enclose a concatenation expression in parentheses
when assigning its value to a variable.

String formatting expression:

o

 The value of a string formatting expression can
be assigned. For example:

o
@foo@=format(@bar@,"-- %s --")

o
@foo@=format(@bar@,"ingn(*)=%d")

Since the value of a string formatting expression expression is an string type
@foo@ will hold result as such.

@foo@=@bar@:format(@sam@,"%d")

Note:

•

 Do not enclose a string formatting
expression in parentheses when assigning its value to a variable.

Comparison expression:

o

 The value of a comparison can be assigned. For
example:

o
@foo@=(@bar@!="stop")

Since the value of a comparison expression is a boolean type @foo@ will hold
either the integer value 1 (true) or 0 (false).

@foo@=(@bar@<(@sam@/2))

Note:

•

 the overall comparison
expression must be enclosed in parentheses as shown for the assignment to
work. Use parentheses to group terms in complicated expressions to get the
proper result.

Logical expression:

o

 The value of a logical expression can be assigned. For
example:

o
@foo@=(@bar@&&!@sam@)

Since the value of a logical expression is a boolean type @foo@ will hold either
the integer value 1 (true) or 0 (false).

@foo@=(@bar@&&(@sam@||(@scene@<5)))

Note: the overall logical expression must

ASPEN Control Reference v1.3

28

be enclosed in parentheses as shown for the assignment to work. Use
parentheses to group terms in complicated expressions to get the proper result.

• Length of array variable:

o

 The length of an array variable can be assigned with
the length operator. For example:

@foo@ will hold an integer value: the number of elements in variable @bar@.

@foo@=length(@bar@)

Variables as command arguments: Once variables are initialized, they can be directly
assigned to some device property. For example:

First, initialize the variable in a macro:

@foo@={0,0,0,0,0,0,0,0}

and then somewhere else in the same macro, or in another macro...

rpingn(*)=@foo@

The "argument" to the ingn command is now a variable name, rather than a literal
integer array, such as {0,0,0,0,0,0,0,0}. Now the value of @foo@ can be controlled by
one macro, and used by one or more other Macros when setting the rear panel input
gains. Variables can also be used within an integer array. For example:

First, initialize the variable in a macro:

@foo@=-3

and then somewhere else in the same macro, or in another macro...

rpingn(*)={0,@foo@,0,0,0,0,0,0}

In this case the 2nd array element takes on the value of @foo@. Any or all of the array
members may be represented by a variable.

Variables in command addresses: The value of a variable can be assigned to one or
all of the "address" elements of command. For example:

First, initialize the variable in a macro:

@foo@=2

and then use it somewhere else in the same macro, or in another macro...

outgn(@foo@)=0

In this case the value of variable @foo@ determines which output channel is assigned a

Macros and the ASPEN Control Language

29

gain of 0. This is a powerful device control technique. Here's another example:

outgn(@foo@[2])=0

In this case the variable @foo@ contains an array of integers, and the value of the 2nd
element of that array is used as the address.

More on variable initialization: To prevent trouble with "uninitialized" variables shared
between multiple Macros, it is often a good idea to initialize them all at once in a macro
that is guaranteed to run before any other macro. This is one of the purposes of the "run
on powerup" macro, which provides a good place for one-time variable initializations. It
will be run exactly once, at powerup. For preset specific initializations, a "preset run on
recall" macro can be designated for each preset in the device. This macro will be run
every time the preset is recalled.

Number of variables: The maximum number of variables that may be initialized in a
device is 32

 .

Loops

A loop is the familiar "while-do" statement used to execute one or more instructions -
based on the current value of a comparison, a logical expression, or a combination of
both. This expression is the "condition" and must be enclosed in parentheses. The
value of the condition is a boolean type, and whether or not the loop continues or
terminates depends on whether the condition is "true" or "false". The "actions" are one
or more simple commands or update commands, enclosed in '`' (backtick) characters.
Multiple instructions must be separated by a ';' (semicolon) character. The special
keywords "while" and "do" must be lowercase. For example:

• while(@foo@<=10)do`ingn(@foo@)=0;@foo@=@foo@+1`

•

While @foo@ is less than or equal to 10, set the gain of input channel @foo@ to
zero, then increment @foo@ and repeat. Terminate when the value of @foo@ is
11. The starting value of @foo@ has been set somewhere else.
@foo@=1;while(@foo@<=10)do`ingn(@foo@)=0;@foo@=@foo@+1`

•

Same as above except @foo@ is initialized on the same macro line as the loop
instruction. Note the separating semicolon.
@foo@=ingn(@bar@);while
(@foo@<0)do`@foo@=ingn(@bar@);@foo@=@foo@+1;ingn(@bar@)=@foo@`

•

Initialize @foo@ to the gain value for some input channel specified by @bar@.
While this gain is less than zero, increment it by one. Terminate when the gain is
zero.
@foo@=ingn(@bar@);while
(@foo@<0&&@x@!=1)do`@foo@=ingn(@bar@);@foo@=@foo@+1;ingn(@bar@)=@foo@;@
x@=prgin(3)`

ASPEN Control Reference v1.3

30

Same as above - except that the loop terminates if programmable input 3 is
asserted.

And so on. The maximum length of a ASPEN command(s) supplied as the "action" is 63
characters. Commands given as an "action" of the loop must be enclosed within
backtick characters - this is the character usually found on the same key as the
tilde ('~'), in the upper left corner of your keyboard.

The use of loops allows device properties and variables that are arrays of values to be
conveniently and efficiently accessed - a single loop instruction can replace many
individual instructions.

Conditionals

A conditional is the familiar "if-then-else" statement used to control what happens -
based on the current value of a comparison, a logical expression, or a combination of
both. This expression is the "condition" and must be enclosed in parentheses. The
value of the condition is a boolean type, and the action (if any) to be taken depends on
whether the condition is "true" or "false". The "actions" are one or more ASPEN simple
commands or update commands, enclosed in '`' (backtick) characters. Multiple
instructions must be separated by a ';' (semicolon) character. The special keywords "if",
"then" and "else" must be lowercase. For example:

• if (@foo@) then `run(3)`

•

If @foo@ is nonzero then run macro 3, otherwise do nothing.
@foo@=`actpre?`;if (@foo@ == 5) then `ingn(3)=0` else `ingn(3)=@bar@`

•

If preset 5 is active, then set channel 3 input gain to 0, otherwise set it to the
value of @bar@. Variable @foo@ is initialized with the active preset number
first.
if (@foo@||@bar) then `run(3)` else `outgn(*)={0,0,0,0}`

And so on. The maximum length of a ASPEN command(s) supplied as an "action" is 63
characters. Commands given as an "action" of the conditional must be enclosed within
backtick characters - this is the character usually found on the same key as the
tilde ('~'), in the upper left corner of your keyboard.

If @foo@ is nonzero or @bar@ is nonzero then run macro 3, otherwise set all
output gains to 0.

The use of conditional logic gives the control language its power. Variables shared
between Macros can drive behavior that is adapted to current circumstances - which
preset is active, the state of some programmable input, or the current value of a device
setting like output gain or mute status.

Macros and the ASPEN Control Language

31

Loops and Conditionals combined

Loops and conditionals may be combined (nested) in certain ways:

• Conditional inside a loop instruction - for example:

•

while(@foo@<5)do`if(@bar@)then\`inmt(@foo@)=1\`else\`inmt(@foo@)=0\`;@f
oo@=@foo@+1`
Loop inside a conditional instruction - for example:
if(@bar@)then`while(@foo@<5)do\`inmt(@foo@)=1;@foo@=@foo@+1\`else`exit`

Important: note that in both cases the "action" part of the "inner" instruction is treated
specially - the backtick characters ('`') which enclose it need to be "escaped" with a
backslash character ('\') since they are nested within another pair of backticks. This also
applies to variable assignments made by invoking a built-in command - do this:

if(@foo@)then`@bar@=\`ingn(*)?\``

not this:

if(@foo@)then`@bar@=`ingn(*)?``

Otherwise the macro processor will get confused about which backtick character goes
with which.

.

No other combination is possible - loops may not be contained within another loop
instruction, nor may a conditional be contained within another conditional instruction.

33

ABNF grammar for the ASPEN Control
Language

OCTET = %x00-FF ; any 8-bit data
CHAR = %x01-7F ; any US-ASCII character except NUL (1 - 127)
UPALPHA = %x41-5A ; any US-ASCII uppercase letter "A".."Z"
LOALPHA = %x61-7A ; any US-ASCII lowercase letter "a".."z"
DIGIT = %x31-39 ; any US-ASCII digit "0".."9"
LF = %x0A ; US-ASCII LF, linefeed (10)
CR = %x0D ; US-ASCII CR, carriage return (13)
SP = %x20 ; US-ASCII SP, space (32)
HT = %x09 ; US-ASCII HT, horizontal tab (9)
DQUOTE = %x22 ; US-ASCII double-quote mark (34)
BSLASH = %5C ; US-ASCII backslash (92)
QCHAR = %x01-21 / %x23-5B / %x5D-7F; any CHAR except DQUOTE and BSLASH
VARCHAR = %x20-3F / %x41-7E; any printable CHAR except "@"
WS = SP / HT
SIGN = "-" / "+"
OFFSET = 1*DIGIT / "*"
RANGE = 1*DIGIT ":" 1*DIGIT
ALPHA = UPALPHA / LOALPHA
ALPHANUM = ALPHA / DIGIT
HEX = "A" / "B" / "C" / "D" / "E" / "F" / "a" / "b" / "c" / "d" / "e" / "f" / DIGIT
HEXNUM = "x" 2HEX
ESCSEQ = BSLASH ("n" / "r" / "t" / BSLASH / DQUOTE / HEXNUM)
STR_TOK = ALPHA *(ALPHANUM)
VAR_TOK = "@" 1*(VARCHAR) "@"
INT_TOK = *1SIGN 1*DIGIT
FLT_TOK = *1SIGN *DIGIT "." *DIGIT ; note that bare "." is valid
QSTR_TOK = DQUOTE *(QCHAR / ESCSEQ) DQUOTE
CRLF = CR LF
OK_TOK = %x4F %x4B ; uppercase string "OK"
ERROR_TOK = %x45 %x52 %x52 %x4F %x52 ; uppercase string "ERROR"
IF_TOK = "i" "f"
THEN_TOK = "t" "h" "e" "n"
ELSE_TOK = "e" "l" "s" "e"
WHILE_TOK = "w" "h" "i" "l" "e"
DO_TOK = "d" "o"
FORMAT_TOK = "f" "o" "r" "m" "a" "t"
LENGTH_TOK = "l" "e" "n" "g" "t" "h"
input = [aspen_addr] (request / verb_request)
output = [aspen_addr] (response / verb_response) *WS CRLF
aspen_addr = (abs_addr / rel_addr)
abs_addr = "|" *DIGIT "|"
rel_addr = "[" (1*DIGIT / "*") "]"
request = (query / hquery / vquery / update / vupdate / target / conditional / loop) *WS CR
verb_request = "!" (query / hquery / vquery / update / vupdate / target) *WS CR
response = status *WS (argument / hargument)
verb_response = status *WS (target / variable) "=" *WS (argument / hargument)
status = OK_TOK / ERROR_TOK
query = target *WS "?"
hquery = target *WS "?" *WS "$"
update = target *WS "=" *WS (argument / hargument / condition / arithmetic)
vquery = variable *WS "?"
vupdate = variable *WS "=" *WS (vargument / condition / arithmetic)
conditional = if_then / if_then_else
if_then = IF_TOK *WS condition *WS THEN_TOK *WS btq_exp
if_then_else = IF_TOK *WS condition *WS THEN_TOK *WS btq_exp *WS ELSE_TOK *WS btq_exp
loop = WHILE_TOK *WS condition *WS DO_TOK *WS btq_exp
btq_exp = '`' (query / vquery / update / vupdate / target) "`"
format = FORMAT_TOK *WS "(" *WS variable *WS "," *WS QSTR_TOK *WS ")"
length = LENGTH_TOK *WS "(" *WS variable *WS ")"
argument = INT_TOK / FLT_TOK / QSTR_TOK / intarray / fltarray / variable / concatenation / format
hargument = "$" 1*(*WS 2HEX) ; note that size of data must be > 0
vargument = INT_TOK / QSTR_TOK / intarray / variable / btq_exp / concatenation / format / length
target = STR_TOK [*WS arraydims]
arraydims = "(" *WS arrayoffsets *WS ")"
arrayoffsets = arraydim [*WS "," *WS arraydim]
arraydim = RANGE / OFFSET / variable
variable = VAR_TOK [*WS vardim]
vardim = "[" *WS (1*DIGIT / variable / arithmetic) *WS "]"
not_variable = "!" variable
intarray = "{" *WS intsequence *WS "}"
intsequence = INT_TOK *(*WS "," *WS INT_TOK)
fltarray = "{" *WS fltsequence *WS "}"
fltsequence = FLT_TOK *(*WS "," *WS FLT_TOK)
concatenation = (QSTR_TOK / variable / format) *WS ":" *WS (QSTR_TOK / variable / format)
condition = "(" *WS (logical / comparison) *WS ")"
logical = logical_and / logical_or
logical_and = (variable / not_variable) *WS "&" "&" *WS (variable / not_variable / comparison)
logical_or = (variable / not_variable) *WS "|" "|" *WS (variable / not_variable / comparison)
comparison = lt / gt / lte / gte / eq / ineq
lt = (INT_TOK / variable) *WS "<" *WS (INT_TOK / QSTR_TOK / variable / arithmetic)
gt = (INT_TOK / variable) *WS ">" *WS (INT_TOK / QSTR_TOK / variable / arithmetic)
lte = (INT_TOK / variable) *WS "<" "=" *WS (INT_TOK / QSTR_TOK / variable / arithmetic)
gte = (INT_TOK / variable) *WS ">" "=" *WS (INT_TOK / QSTR_TOK / variable / arithmetic)
eq = (INT_TOK / QSTR_TOK / variable) *WS "=" "=" *WS (INT_TOK / QSTR_TOK / variable / arithmetic)

http://www.ietf.org/rfc/rfc2234.txt�

ASPEN Control Reference v1.3

34

ineq = (INT_TOK / QSTR_TOK / variable) *WS "!" "=" *WS (INT_TOK / QSTR_TOK / variable / arithmetic)
arithmetic = "(" *WS (add / sub / mult / div / mod) *WS ")"
add = (INT_TOK / variable) *WS "+" *WS (INT_TOK / variable / arithmetic)
sub = (INT_TOK / variable) *WS "-" *WS (INT_TOK / variable / arithmetic)
mult = (INT_TOK / variable) *WS "*" *WS (INT_TOK / variable / arithmetic)
div = (INT_TOK / variable) *WS "/" *WS (INT_TOK / variable / arithmetic)
mod = (INT_TOK / variable) *WS "%" *WS (INT_TOK / variable / arithmetic)

	ASPEN Control Protocol and Language
	ASPEN Control Protocol
	ASPEN Control Language
	Request Messages
	 Action request
	 Update request

	Response Messages
	 Action response
	 Query response
	 Update response

	Data types
	 Quoted string type
	 Integer type
	 Array of integer
	 Floating point
	 Array of floating point
	 Binary

	Macros and the ASPEN Control Language
	Commands
	Variables - Part 1
	Expressions
	Variables Part 2
	Loops
	Conditionals
	Loops and Conditionals combined

	2TABNF2T grammar for the ASPEN Control Language

